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Abstract

This article addresses the problem that the Korteweg-de Vries (KdV) equation does not fully
capture the complexity of nonlinear waves. To address this issue, we solve the extended Korteweg-
de Vries (eKdV) equation, which includes the higher-order nonlinear and dispersion terms. The
main objective is to investigate how cubic nonlinearity and fifth-order dispersion terms affect
solitary waves propagation. A unique aspect of this study is the use of the Pseudospectral (PS)
method, which allows for much longer numerical simulations compared to the previous stud-
ies without any existing the higher simulations frequencies. The results show that the Gardner
equation, which dominant with nonlinear waves, leads to steepening and breaking of solitary
waves. In contrast, the Kawahara equation, which reflects dispersive waves, exhibits instability
and produces oscillatory tails. These findings provide valuable insights into the behavior of soli-
tary waves and highlight the effectiveness of the Pseudospectral method in studying complex
wave phenomena.

Keywords: pseudospectral method; extended Korteweg-de Vries equation; cubic nonlinear term;
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1 Introduction

Nonlinear partial differential equations are important in many fields of science and engineer-
ing, such as chemical physics, optical fibre, plasma physics, fluid dynamics and many more [27,
29]. In fact, the eKdV equation belongs to the class of PDEs and has gained much more popularity
as it models several physical phenomena in nature [31]. Khusnutdinova et al. [18] stated that the
eKdV equation, also known as Gardner-Kawahara equation, can be written as,

U + QUG + 041U2’LLI + ﬁuazmr + 51UIIZL’ICE - 07 (1)

where «, a, 8, and f; are arbitrary constants, which are determined by the specific details of
the physical issue. The function u(z,t) can be regarded as the displacement of the isopycnals,
is the horizontal coordinate, and ¢ is time. Equation (1) includes the traditional quadratic (uuy)
and cubic nonlinearities (u?u, ), as well as the third-order (., ) and fifth-order linear dispersion
(Ugzwas) terms, similar to those found in previous research [12].

In the case of the Gardner-Kawahara equation, where some coefficients are set to be zero, (1)
can be reduced to well-known equations such as, for instance, the Gardner equation as given in (2)
and the Kawahara equation as in (3) [18].The Gardner equation, often referred to as the modified
Korteweg-de Vries equation [7, 33], includes quadratic nonlinearity, cubic nonlinearity, and third-
order linear dispersion, as discussed in previous studies [2, 15]. This equation has been studied
in greater depth using the same model by [22, 24]. The wave model will generate solitons with
various shapes as shown in the paper [6]. This paper will focus on both the Gardner equation and
the Kawahara equation to observe the differences in solitary wave propagation between these two
equations. Gardner equation can be written as,

g + autg + oqulug + Buges = 0. (2)

The quadratic and cubic nonlinear terms for the conditions of the stratified ocean contribute to
the internal wave dynamics, depending on specific density and current stratification, where the
initial-value problem for intense disturbances may be quite complicated [15]. We believe there are
still many things to study about the influence of cubic nonlinear terms on ocean wave problems.
In a different case, when the cubic nonlinear term is ignored by setting o; = 0, (1) reduces to
(3), known as the Kawahara equation, introduced by [17]. The Kawahara equation is a type of
KdV equation that includes quadratic nonlinearity and third and fifth-order linear dispersion,
as discussed in [5, 28]. Recent research on this model, such as the study by [16], highlights its
growing interest.

Numerical simulations show that highly oscillatory behavior can be captured accurately which
had been carried out by [17, 20] in solving (3),

U + auty + Blgze + PrUzzeze = 0. (3)

Previous studies have shown that Kawahara equation is highly reliable to model many complex
systems such as seas, oceans, and plasma physics [5, 13]. In this paper, we employ the Pseu-
dospectral method to obtain the different wave propagations generated by both the Gardner and
Kawahara equations. Notably, while previous studies utilized alternative methods, our approach
extends the simulation up to ¢ = 100, ensuring robustness and smooth results. In Section 2, we

explain the Pseudospectral method has produce better results, while in Section 3, conclusions will
be addressed.
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2 Pseudospectral Method

In this section, we directly begin with (1), and subsequently set certain constants to zero in
order to obtain the numerical results for the Gardner and Kawahara equations. Pseudospectral
method is an alternative to the finite difference or finite element method to solve nonlinear partial
differential equations claim by [9]. Previous studies have used this method to solve the Ostrovsky
wave model problems, as seen in the works of [3, 4], which produced solitons with shapes that are
specific to the Ostrovsky model. Generally, this method is simple to be implement and has much
lower computing cost with the Fast Fourier Transform (FFT). FFT is known to be a very efficient
algorithm for calculating the Discrete Fourier Transform (DFT). Essentially, DFT converts real
space to Fourier space and substitutes the temporal derivative by finite difference approximation.

The infinite interval is replaced by —L < z < L by applying a coordinate transformation
which is a linear transformation to transform the spatial variable u(x, t) from (1) to 27 per10d1c1ty—

dependent variables V'(¢,t). By introducing the linear transformation £ = sz + m where s = Z'
(1) can be written as,

Vi + OtSVVg + a15V2V5 + 553‘/555 + 5155‘/&555 =0. (4)

In the Pseudospectral method, the nonlinear terms, V'V and V2V, are computed in the real

1
domain before transforming back to the Fourier space at each time step. By letting W, = §V2 and
1
Wy = §V3 for quadratic and cubic nonlinear terms, (4) becomes,

Vi + Ostlg + OqSWzg + ,353‘/555 + ﬂ155‘/§5555 =0.

To obtain the numerical solution, the interval [0, 2] is discretized by N + 1 equidistant points.
2
Let& =0,&1,&, ..., N =27, s0 that A = FW In this case, N will always be even and is to be a
N
power of two. Letsay a = 5 The DFT of V(¢;,t), W1(&;,t), and W (§;,t) forj =0,1,2,... ,N—1
denoted by V (p, t), Wi (p,t), and Wa(p, t), respectively, are given by,

1 N—1 )
V(p, t)=— U(£j7 te” pia
VN =
Wk(p, t) = % N_lw(fja t)e —IRE , k=12
7=0

Therefore, the DFT equation with respect to £ is given as follows,

Vi(p,t) + iapWi (p, t) + icpWa(p, t) — Bp*s°V (p, t) + Brip°s°V (p, t) = 0. (5)

Then, by using the following central difference approximations for V; and central averaging
formula for V, respectively, we have,

Vi(p,t) ~ 2At ,
. V(p,t+ At) + V(p, t — At
Vit~ L@ )2 (p )
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To simplify (5), by denoting V (p,t + At) and V (p,t — At) by V,; and V,,,;, respectively, the
scheme is given by,

1

V =
PP ip3s3ALS + iB1pPs®

[(1 +is3p3AtS — iﬁ1p5s5)‘7mt — 2ipAt (ang(p, t) + alVVgg(p, t))} )

3 Results

Numerical results for Gardner equation (2) and Kawahara equation (3) are presented in this
section. In this study, all computational work was done using a laptop computer with the follow-
ing specification: Intel® i5-1135G7, 2.40GHz 4 cores and DDR-4 24GB memory. The C++ language
was used to implementour algorithm while the visualization was done using an open-source soft-
ware Gnuplot. We investigated the effects of cubic nonlinear and fifth-order linear dispersion
terms in our study. Therefore, we could analyze the propagation of waves and their applications
to surface and internal water waves.

Example 3.1. In this computations, we set the values of computations as N = 2048, L = 50, and
At = 0.01 to perform the numerical computations for Gardner equation (2). The initial condition for
this computations is given by Kurkina et al. [20],

U(z,0) = @ tanh (ﬁx—kqﬁ) — tanh <\/Z - ¢>] ;
where
#(V) = iln (h@) .

The result for Example 3.1 is as shown in Figure 1, and we can observe the formation of a Kd V-
like soliton formed at the initial time as a regular soliton. The value of V' represents the size of the
amplitude in the initial condition. When the value of V is increased from V' = 0.1 to V' = 0.1663
and V' = 0.166666, we observed that both amplitude and width increase. Consequently, the tops
become flatter, similar to the fat graphs studied by [32] and the fat solitons studied by [21]. Until
at one point of V' = 0.166666, the soliton becomes a table-top wave in the initial. When we increase
the time, the soliton propagates in the positive (right) direction as shown in Figure 1. We can see
that new solitons start to build at time ¢ = 10 for V = 0.1663 and V' = 0.166666. After that, at
t = 20 for V = 0.1663, bi-solitons emerge, and for V' = 0.166666, the solitons abruptly change their
polarity to build triple-solitons.

Then, the number of solitons increases parallel with increasing time, called multi-solitons when
t =20,t = 30 and t = 50. The second solitons for V' = 0.166666 are getting more and more similar
to the first solitons at V' = 0.1663, this shows that the solitons with V' = 0.166666 move one solitons
ahead compared to V' = 0.1663 and move in the same direction and exist likely to merge. We do
not rule out the possibility of perfect merging, double merging, imperfect merging and absorb-
emit merging phenomena considering the nonlinear nature found in Gardner equation (2), as the
studied in [35]. This pattern is not applied for V' = 0.1, we can see that the regular solitons remain
qualitatively the same with a stable and smooth solitary wave. When solitons remain qualitatively
the same with low speed, moving to the right positive sign as time increases, we can see this shape
of the wave in the previous study [25]. We can see that the soliton with the highest and widest
amplitude (V' = 0.166666) is faster than the soliton with a smaller width (V' = 0.1663) and the
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soliton with the lowest amplitude and smallest size (V' = 0.1), which is the slowest propagation.
For Example 3.1, we observe that our results are in good agreement with previous studies done
by Khusnutdinova et al. [18] and Kurkina et al. [20]. This result also shows the behavior of
nonlinear waves as stated by Crighton [10] and Curry et al. [11] that nonlinear waves will break
in multi-valuedness.
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Figure 1: Snapshot for Example 3.1, solution of Gardner equation (2) att = 0,¢t = 10,¢t = 20,¢t = 30,¢t = 40 and t = 50, with V' = 0.1
(blue line), V' = 0.1663 (red line), and V' = 0.166666 (green line).

Figure 2 shows the movement of wave at all time until ¢ = 100 when V' = 0.1. It was seen that
when ¢ = 100 is in the state of V' = 0.1, the soliton moves by 10 units, which proves the role of
V is related to the speed of the soliton which is 0.1 ms~!. This movement of the left wing pro-
duces a uniform wave without splitting making it strongly stable solitons with a constant velocity.
This solitons behavior can be seen as quasi-stationary long-living solitary waves that permanently
radiating from one side small-amplitude linear waves produce radiating solitons [8, 36].
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Figure 2: Example 3.1, solution of Gardner equation (2) for all time ¢ until £ = 100, with V' = 0.1.
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Figure 3 shows the propagation of wave at all time until ¢ = 100 when V' = 0.1663. The soliton
splits and becomes narrow, and its amplitude increases parallel to time until ¢ = 100. It shows
a different behavior than V' = 0.1 when the soliton will break into three soliton, shows the first
soliton is faster with a higher amplitude when it has exceeded 50 units at ¢ = 100. The second
soliton with smaller amplitude is slower by only 30 units at ¢ = 100. Meanwhile, the third soliton
that appears stationary resembles the soliton in Figure 2.
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Figure 3: Example 3.1, solution of Gardner equation (2) for all time ¢ until ¢ = 100, with V' = 0.1663.

Figure 4 shows the movement of wave at all time until ¢ = 100 when V' = 0.166666. Observing
the movement of soliton with V' = 0.166666, the initial soliton is wider until it forms a table-top
wave and it produces more solitons, known as multi-solitons. Figure 3 shows the solitons with
the highest amplitude will move faster like the first soliton in Figure 4 when it exceeds 50 units
with a time of only ¢ = 70 with a speed limit of 0.7143ms™'. It can also be seen that the second
soliton is the same as the first soliton in Figure 3 and the last soliton which is the fifth soliton is
similar to the stationary soliton in Figure 2. We think it is possible that the soliton that exists in the
middle of the fifth and second soliton (fourth and third soliton) is a soliton that exists from the
violation or combination of solitons. It explains how the width of the soliton affects the motion
of the soliton. This is a new discovery about the behavior of fat solitons. It can be seen that the
red color is fading as the solitons split into multi-solitons. A soliton that is split will lose energy
as discussed by [14] proves that it is weak in the regime of high-quality splitting. Therefore, it is
concluded that the fat soliton splits become narrower, and their amplitudes increase.

V=0.166666 2

Figure 4: Example 3.1, solution of Gardner equation (2) for all time ¢ until ¢ = 100, with V' = 0.166666.
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Example 3.2. For Example 3.2, we have produced numerical results for Kawahara equation (2) with the
fifth-order linear dispersion. We set the coefficient value as 5y = —1. We set the values of N = 2048,
L =100 and At = 0.01. The initial condition for this case follows the one implemented by Khusnutdinova

etal [18],
105 4 [T —=Vt
=——B
U(z,t) 169 sech ( A ),
where
36
B:—@V, A: V _52.87 and B<O

Figure 5 shows that the KdV-like solitons maintain a constant width when the value of V" in-
creases, but the amplitude of the solitons simultaneously increases at ¢ = 0. It is apparent that
the amplitude of the solitons when V' = 0.5 is lower than when V' = 0.6, and when V' = 0.8,
solitons become much higher. Then, we analyse the wave propagation when time increases to
t = 10, 20, 30, 40 and 50, respectively. We observe that at t = 10, the soliton with V' = 0.8 precedes
the motion of solitons. They travel to the right (positive) with difference speed base on difference
value of V. The value of V that is high will move faster as analyzed from the movement when
t = 20 and more longer than that. This movement are not interrupting the number of solitons
or the regular shape of solitons. But one may observe the emergence of oscillatory tails. Solitons
with oscillatory tails affecting how they interact with other solitons and propagate. The tails of
these solitons oscillate without emitting radiation, creating a barrier between neighboring solitons,
preventing their interaction [1].
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Figure 5: Snapshot for Example 3.2, solution of Kawahara equation (3) att = 0,t = 10,t = 20,t = 30,t = 40 and t = 50, with V' = 0.5
(blue line), V' = 0.6 (red line), and V' = 0.8 (green line).

We can see at ¢ = 50, the waves move in unison to the right positive sign with respective
decreasing speeds due to the weakening of the energy; it shows the dissipative wave behavior
[11]. Obviously, we can see that the higher waves move faster than the lower ones and the moving
soliton brings the oscillatory tails with stable regular soliton through time increases. Our result
agrees with that of Gong et al. [13] and Aljahdaly et al. [5]. In addition, the Kawahara equation
(3) produces solitary waves with oscillatory tails behaviors [18, 20].
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When the time is extended to ¢t = 100 as illustrated in Figure 6, a soliton with V' = 0.5 moves 50
units without changing its size and remains a single solution with the oscillatory tails consistently
until reaching ¢ = 100 as shown in Figure 9(a). We can observe that the speed of the soliton
is 0.5ms™!, which is half of the time. It proves the role of V in the soliton is the speed of the
soliton. The soliton is a regular soliton that maintain its shape and speed during propagation
and interactions with other solitons with strongly stability, preserving its shape and speed even
after collisions with other solitons. This soliton is typically obtained using the inverse scattering
transform, which is based on the integrability of the field equations that propagate at a constant
velocity, determined by their initial shape and the specific model they are derived from. This
type of soliton is also like quasi-stationary long-living solitary waves which eventually produce
radiating solitons when permanently radiating from one side small-amplitude linear waves [8, 36].
The oscillatory tails as seen in Figure 5 are very small, we cannot see them in Figure 6 which
considers a longer time.
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Figure 6: Example 3.2, solution of Kawahara equation (3) for all time ¢ until ¢ = 100, with V' = 0.5.

Figure 7 shows that the soliton with V' = 0.6 moves fast and reaches 50 units without changing
size of soliton and still becomes a single solution with the oscillatory tails consistently at ¢t = 100 as
shown in Figure 9(b). This difference compared to Figure 6 explains how the role of velocity, V' in
the movement of the soliton with time. It can also be seen that the soliton amplitude is also higher
compared to Figure 6. It is caused by a different initial shape as seen in Figure 5 when ¢ = 0. From
the point of view of shape, it is not much different from Figure 6 by displaying regular solitons
that maintain their shape with strongly stability which is a natural property of linear waves [8, 36].
This is the same with a findings claim linear dispersive equations either disperse completely or
in the presence of an external potential, decompose into a superposition of a radiative state that
disperses to zero, plus a bound state that exhibits phase oscillation but is otherwise stationary
[30].
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Figure 7: Example 3.2, solution of Kawahara equation (3) for all time ¢ until ¢ = 100, with V' = 0.6.

Figure 8 shows that the soliton with V' = 0.8 moves faster than V' = 0.5 and V' = 0.6. The
speed trend of this soliton is parallel to the increasing value of V, when this soliton with V' =
0.8 accelerates through 50 units in less than ¢ = 80 without changing size of soliton and still
becomes a single solution with the oscillatory tails consistently at ¢ = 100 as shown in Figure
9(c). The amplitude of this soliton is also high as can be seen in Figure 8 up to 2.5. Just like
Figures 6 and 7, the strong wave is maintained until it resembles a gap soliton. Gap solitons are
characterized by their existence in the linear spectral band gap of the medium, and they arise due
to the balance between dispersion and nonlinearity [23, 26]. Notably, despite these variations in
speed, the solitons remain qualitatively the same.

V=0.8

ufxt)

Figure 8: Example 3.2, solution of Kawahara equation (3) for all time ¢ until ¢ = 100, with V' = 0.8.

Comparing to Example 3.1, the Gardner equation solution does not have an exact solution,
therefore we just do the comparison for the Kawahara equation problem, Example 3.2. We com-
pare the analytical results with the results obtained using the PS method in Figure 9 at ¢t = 100 for
Kawahara equation (3) with different value of V. Solitary waves with oscillatory tail behaviors
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are produced in the numerical results but not in the analytical results. This outcome has been
widely discussed by researchers, with analytical studies suggesting that exact solutions produce
oscillatory tail behaviors, as demonstrated in the works of [19, 34] and more recently by Khus-
nutdinova et al. [18]. These efforts address higher-order nonlinear and dispersive terms, similar
to the numerical tests conducted by Kawahara [17]. Therefore, our results are consistent with
previous studies that claim the Kawahara equation exhibits oscillatory tails.

Analytical —e—
PS method

u(x,t)

0.5 -

-100 -80 -60 -40 -20 0 20 40 60 80 100
(a) Solution of Kawahara equation (3) at t = 100, with V' = 0.5.
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T T
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1.5 -

u(x,t)
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(b) Solution of Kawahara equation (3) at ¢ = 100, with V' = 0.6.
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(c) Solution of Kawahara equation (3) att = 100, with V' = 0.8.

Figure 9: Comparison of exact and PS numerical solutions of the Kawahara equation (3) at ¢ = 100 for different value of V.

4 Conclusion

In conclusion, the study successfully achieved its objectives by utilizing the PS method to do the
simulation and observe the propagation of wave in extended time for both Gardner and Kawahara
equations. The results illustrate distinct behaviors of solitary waves influenced by cubic nonlin-
earity and fifth-order linear dispersion terms. The Gardner equation demonstrates how solitary
waves vary in size and can lead to multiple solitary waves over time, with changes in the parame-
ter V that affecting their behavior. In contrast, the Kawahara equation consistently forms solitary
waves with increasing amplitudes over time, influenced by value of V' and we observed the ex-
isting of oscillating tails in the propagation. Both equations highlight the effects of higher-order
terms, revealing complex dynamics between nonlinear and dispersive effects. The research en-
hances understanding of solitary wave propagation and internal wave interactions, aligning with
the investigation into the impacts of cubic nonlinear and fifth-order linear dispersion terms.
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